Exercise 3.3.4

Sketch the Fourier cosine series of $f(x)=\sin \pi x / L$. Briefly discuss.

Solution

Assume that $f(x)$ is a piecewise smooth function on the interval $0 \leq x \leq L$. The even extension of $f(x)$ to the whole line with period $2 L$ is given by the Fourier cosine series expansion,

$$
f(x)=A_{0}+\sum_{n=1}^{\infty} A_{n} \cos \frac{n \pi x}{L},
$$

at points where $f(x)$ is continuous and by the average of the left-hand and right-hand limits at points of discontinuity. The coefficients A_{n} are obtained by multiplying both sides by $\cos \frac{p \pi x}{L}$ (p being an integer), integrating both sides with respect to x from 0 to L, and taking advantage of the fact that cosine functions are orthogonal with one another.

$$
A_{n}=\frac{2}{L} \int_{0}^{L} f(x) \cos \frac{n \pi x}{L} d x
$$

A_{0} is obtained just by integrating both sides of the series expansion with respect to x from 0 to L.

$$
A_{0}=\frac{1}{L} \int_{0}^{L} f(x) d x
$$

For $f(x)=\sin \pi x / L$ in particular, we have

$$
A_{0}=\frac{1}{L} \int_{0}^{L} \sin \frac{\pi x}{L} d x=\frac{2}{\pi}
$$

and

$$
\left.\left.\begin{array}{rl}
A_{n} & =\frac{2}{L} \int_{0}^{L} \sin \frac{\pi x}{L} \cos \frac{n \pi x}{L} d x \\
& =\frac{2}{L} \int_{0}^{L} \frac{1}{2}\left[\sin \left(\frac{\pi x}{L}+\frac{n \pi x}{L}\right)+\sin \left(\frac{\pi x}{L}-\frac{n \pi x}{L}\right)\right] d x \\
& =\frac{2}{L} \int_{0}^{L} \frac{1}{2}\left[\sin \frac{(1+n) \pi x}{L}+\sin \frac{(1-n) \pi x}{L}\right] d x \\
& =\frac{1}{L}\left[\int_{0}^{L} \sin \frac{(1+n) \pi x}{L} d x+\int_{0}^{L} \sin \frac{(1-n) \pi x}{L} d x\right]=0 \quad \text { if } n=1 \\
& =\frac{1}{L}\left[\frac{\left[1+(-1)^{n}\right] L}{(1+n) \pi}+\frac{\left[1+(-1)^{n}\right] L}{(1-n) \pi}\right] \quad \text { if } n \neq 1
\end{array}\right] \begin{array}{ll}
0 & n=1 \\
-\frac{2\left[1+(-1)^{n}\right]}{\left(n^{2}-1\right) \pi} & n \neq 1
\end{array}\right] \begin{array}{ll}
0 & n \text { odd } . \\
-\frac{4}{\left(n^{2}-1\right) \pi} & n \text { even } .
\end{array}
$$

Below is a plot of $f(x)=\sin \frac{\pi x}{L}$ and its even extension to the whole line.

